Specification of Thermoelectric Module

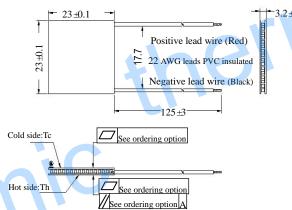
TES1-07139

Description

The 71 couples, 23 mm \times 23 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 70°C or larger delta T max, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Peformance Specification Sheet

Th(℃)	27	50	Hot side temperature at environment: dry air, N2	
DT (90)	68	76	Temperature Difference between cold and hot side of the	
DTmax(°C)			module when cooling capacity is zero at cold side	
Umax(Voltage)	8.67	9.71	Voltage applied to the module at DTmax	
Imax(amps)	4.7	4.7	DC current through the modules at DTmax	
QCmax(Watts)	25.9	28.4	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance(ohms)	1.58~1.76	1.74~1.95	The module resistance is tested under AC	

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

1. T100: BiSn (Melting Point=138 ℃)

2. T200: CuSn (Melting Point= 227 ℃)

B. Sealant:

1. NS: No sealing (Standard)

2. SS: Silicone sealant

3. EPS: Epoxy sealant

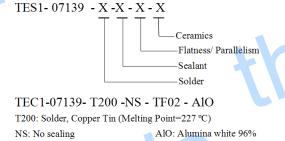
4. Customer specify sealing

C. Ceramics:

1. Alumina (Al₂O₃, white 96%)(AlO)

2. Aluminum Nitride (AlN)

D. Ceramics Surface Options:

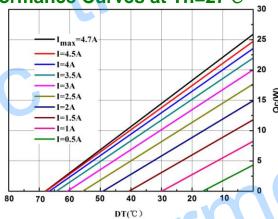

1. Blank ceramics (not metalized)

2. Metalized (Copper-Nickel plating)

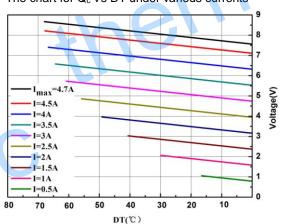
Flatness/ Parallelism Option

Suffix	Thickness / H (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length		
TF	0:3.2±0.1	0:0.05/0.05	125±3/Specify		
TF	1:3.2±0.05	1:0.025/0.025	125±3/Specify		
TF	2:3.2±0.03	2:0.015/0.015	125±3/Specify		
Eg. TF01: Thickness 3.2±0.1(mm) and Flatness 0.025/0.025(mm)					

Naming for the Module



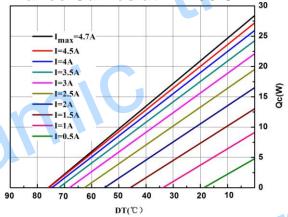
TF02: Thickness ±0.1(mm) and Flatness/Parallelism 0.015/0.015(mm)


Specification of Thermoelectric Module

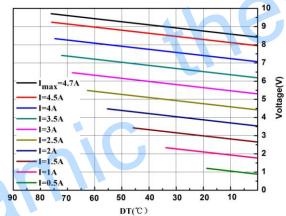
TES1-07139

Performance Curves at Th=27℃

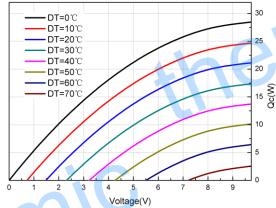
The chart for Q_c Vs DT under various currents



The chart for Voltage Vs DT under various currents



The chart for Qc Vs Voltage under various DT


Performance Curves at Th=50℃

The chart for Qc Vs DT under various currents

The chart for Voltage Vs DT under various currents

The chart for Qc Vs Voltage under various DT

Operation Cautions

- Cold side of the module sticked on the object being cooled
- Hot side of the module mounted on a heat radiator
- Work under DC

- Operation below I_{max} or V_{max}
- Operation or storage module below 100℃